A NOVEL HOMOGENEOUS TIME-RESOLVED FLUORESCENCE METHODOLOGY THAT IDENTIFIES THE FIRST FAMILY OF NATURAL PRODUCTS OF MICROBIAL ORIGIN AGAINST THE PD-1/PD-L1 IMMUNO ONCOTARGET

Elisabeth Domingo-Contreras¹, José R. Tormo¹, Carmen Ramos¹, Ignacio González¹, Thomas A. Mackenzie¹, Jesús Martín-Serrano¹, Katarzyna Magiera-Mularz², Radoslaw Kitel², Lukasz Skalniak², Fernando Reyes¹, Rosario Fernández¹ Francisca Vicente¹, Olga Genilloud¹ and Francisco Castillo^{1*}

¹Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, SPAIN.

²Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland.

elisabeth.domingo@medinaandalucia.es; www.medinadiscovery.com

INTRODUCTION

PD-1 is a checkpoint protein on immune T cells. As such, T cell's PD-1 binds to the PD-L1 receptor, of either cancer or normal cells, to trigger an intercellular signaling event that prevents the corresponding immune attack. Cancer cells tend to overexpress PD-L1 to enhance tumor expansion. Even though there are anti-PD-1 and anti-PD-L1 therapeutic antibodies clinically validated to date [3], these therapeutics present adverse immunological issues, implying there is a need for alternative inhibitors that could present a better immunological profile [5]. We present herein the first high throughput assay for the screening of microbial extracts that is based on the homogeneous time-resolved fluorescence methodology [1], [2]. We apply such a novel methodology to identify PD-1/PD-L1 inhibitors from a library of fungal and bacterial extracts of maximized diversity [4]. As result of this successful proof of concept against filtered and concentrated crudes from 117 strains, we have detected, isolated and characterized the first family of PD-1/PD-L1 inhibitors of microbial origin. These inhibitors present a distinctive molecular mechanism of action based on the destabilization of the PD-1 protein. We also show evidence that the most potent member of family of compounds has scope as new inhibitor of immune check-point PD-1/PD-L1 by demonstrating cellular activity in a cellular blockade assay [6].

RESULTS

A summary of the Homogeneous Time-Resolved Fluorescence (HTRF) screening against a collection of 117 microbial extracts of maximized diversity.

A)

Representation of the microbial extracts in the x axis and the correction of the raw inhibitory activity (665 nm/620 nm emission ratio) by removing the contribution of sample interference in the 620 nm emission channel and defined as 0% for BMS-1 positive control and as 100% for Coomassie blue interference standard. Horizontal line in grey represents the average values for each population. The green dots represent the microbial fermentations from which the family of active Compound-01-03 have been isolated. Orange dots represent interference extracts [6].

MEDIN4

HTRF-guided chemical purification of Compounds-01-03:

Preparative HPLC displaying the UV profile (blue line), the HTRF activity profile (dark green line), the HTRF corrected activity (green line) and the interference profile (yellow line). A) Compound-01, B) Compound-02; C) Compound-03 [6].

HTRF confirmation of Compounds-01-03 validates the screening setup:

A) Compound-01 (IC₅₀ = 9.8 μ M ± 4.6 μ M), B) Compound-02 (IC₅₀ = 18.6 μ M ± 13.7 μ M), C) Compound-03 (IC₅₀ = 64.4 μ M ± 30.7 µM). All curves were obtained at 1% DMSO final, except for C, which was further optimized at 5% DMSO because of compound solubility issues [6].

Thermal shift experiments against PD-1 and PD-L1 confirms the MoA of Compounds-01-03

Filtered and concentrated crude extracts were screened by our homogeneous time-resolved fluorescence (HTRF) assay, whose activity is represented as a 665 nm emission/620 emission ratio and expressed as relative activity with respect to BMS-1 control. Subsequent normalization of the 620 nm emission from the donor, which should remain invariable with respect to BMS-1 control, allows the deconvolution of the interfering crudes from the active ones. The quick labelling of the active crudes by high resolution mass-spectrometry accelerates the identification of known m/z(+)responsible for the activity by matching them with known molecular formulas available in our databases. Further HTRF-guided chemical purification at the preparative scale leads to the isolation of the active Natural Product for further characterization against the PD-1/PD-L1 immune oncotarget comprising HTRF, AlphaScreen, Thermal shift assay, cellular toxicity assay and PD-1/PD-L1 cellular blockade assay [1],[2],[6].

CONCLUSIONS

- Screening of microbial extracts becomes efficient by our novel homogeneous time-resolved fluorescence approach.
- This novel screening application overcomes the limitations of pioneering fluorescence polarization efforts.
- The first family of bacterial natural products active against PD-1/PD-L1 inhibitors is reported.
- TSA and alphaLISA assays confirms the destabilization of PD1-target as MoA for the disruption of PD1/PD-L2 complex for the compounds-01-03.
- Compound-01 yielded a relative activity of 23.0 ± 1.5 at 6 µM with respect to vehicle (1%)

Melting curves reporting for the stabilization or destabilization ΔTm (°C) of PD-L1 or PD-1 upon binding to Compounds-01-03 with respect to vehicle alone at an equivalent DMSO concentration of 5%. Panel A corresponds to PD-L1 thermograms above demonstrating not meaningful ΔTm (°C) = 0.1 °C. Panel B corresponds to PD-1 thermograms below confirming ΔTm (°C) < -1.7 degrees [6] for Compounds-01-03 and therefore that the destabilization of PD-1 corresponds with the inhibition of the PD-1/PD-L1 complex.

Orthogonal confirmation of the MOA for Compounds-01-03. AlphaLISA PD-1/PD-L2 assay.

A) Compound-01 (IC₅₀ = 18.8 μ M ± 8.2 μ M), B) Compound-02 (IC₅₀ = 37.7 μ M ± 12.1 μ M), C) Compound-03 (IC₅₀ = 26.1 μ M ± 15.8 μM). All curves were obtained at 1% DMSO final. [6]

Toxicity assay on Jurkat cells.

DMSO) as 0% activity in the PD-1/PD-L1 cellular blockade assay.

Comparison between the activity in the HTRF assay and the cellular blockade assay suggests a higher relative potency of compound-01 with respect to compound-02 and compound-03.

References

[1] Tammy C. Turek-Etienne., Ming Lei. Use of Red-Shifted Dyes in a Fluorescence Polarization AKT Kinase Assay for Detection of Biological Activity in Natural Product Extracts. Journal of Biomolecular Screening. 2004, 9, 52-61.

[2] Christian A. Hassing., Fu-Yue Zeng. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins. Journal of Biomolecular Screening. 2020, 19, 1201-11.

[3] S. Upadhaya, S.T. Neftelinov, J. Hodge, J. Campbell, Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape, Nat Rev Drug Discov. 21 (2022) 482-483.

[4]H. Bansal, R.K. Singla, S. Behzad, H. Chopra, A.S. Grewal, B. Shen, Unleashing the Potential of Microbial Natural Products in Drug Discovery: Focusing on Streptomyces as Antimicrobials Goldmine, Curr Top Med Chem. 21 (2021) 2374–2396

[5] L. Skalniak, K.M. Zak, K. Guzik, K. Magiera, B. Musielak, M. Pachota, B. Szelazek, J. Kocik, P. Grudnik, M. Tomala, S. Krzanik, K. Pyrc, A. Dömling, G. Dubin, T.A. Holak, Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells, Oncotarget. 8 (2017) 72167– 72181.

[6] Domingo, E., et al. Impress. 2022.

Financed by the Andalusian Regional Government and co-financed by the European Union through "Fondos FEDER: Proyectos de I+D+i, en régimen de concurrencia competitiva, destinadas a entidades privadas calificadas como Agentes del Sistema Andaluz del Conocimiento, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020). PY18-RE-0041". "Ayudas a infraestructuras y equipamientos de I+D+i para entidades de carácter privado convocada, en régimen de concurrencia competitiva, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) y de la Estrategia de Innovación de Andalucía (RIS3 Andalucía). IE_18_0031 Proyecto Screening". Funded by: Spanish Ministry of Science and Innovation under grant agreement INP-2011-0016-PCT-010000-ACT7 - 2011

A) Corresponds to Compound-01. B) corresponds to Compound-02. C) corresponds to Compound-03. For each sample, three experimental repeats have been tested [6].

Cellular blockade activity in correlation with the PD-1/PD-L1 activity in protein-based assays

Assay	Control (Vehicle)	Positive Control	Compound-01	Compound-02	Compound-03
HTRF (IC50, μM) ¹	0	0.30± 0.05	9.8 ± 4.6	18.6 ± 13.7	64.4 ± 30.7
Cellular blockade ² (relative vehicle, 0%)	0	102.0 ± 1.9	23.0 ± 1.5	1.0 ± 2.8	5.5 ± 1.0
alphaLISA ³ PD-1/PD-L2 (IC50, μM)	0	0.4 ± 0.2	18.8 ± 8.2	37.7 ± 12.1	26.1 ± 15.8
TSA⁴ PD-1 (ΔTm, ºC)	0.0 º	_	-2.1 º	-1.7 º	-3.7 º
TSA ⁵ PD-L1 (ΔTm, ºC)	0.0 º	6.5 º	-0.1 º	0.1 º	-0.1 º

Characterization of Compound-01,-02 and -03 by HTRF, cellular blockade assay, AlphaLISA PD-1/PD-L2 and TSA. ¹Potency (IC₅₀) in the HTRF assay, BMS-1 10µM is used as positive control. ²Relative potency in the cellular blockade assay at compound concentration of 6 μM is referred to the inhibition of Durvalumab 2.9μg/mL as 100% activity. ³Potency in the AlphaLISA assay, Nivolumab 10μg/mL is used as control. ⁴ Δ Tm values are shown for a compound concentration of 50 micromolar in 5% DMSO. ⁵ Δ Tm values are shown for a compound concentration of 50 micromolar is referred to the stabilizing effect of BMS-1166 as positive control.[6].