

BARCELONA

Beyond pharma R&D services, scientific solutions

ADME properties and non-clinical pharmacokinetics of a novel selective $\sigma 2$ receptor ligand with neuroprotective effects

Sandra YESTE, Raquel F. REINOSO, M^a Teresa SERAFINI, Gregorio ENCINA, Javier COSTEA, Enrique HERNÁNDEZ,

Sandra SILVESTRE, Jordi QUINTANA, José Miguel VELA

DMPK Department, Welab Barcelona, Parc Científic Barcelona, C/ Baldiri Reixac 4-8, 08028 Barcelona, Spain

INTRODUCTION

ADV462 is a novel small molecule resulting from a rational hit to candidate process focused on selective sigma-2 receptor ligands with neuroprotective properties.¹ In this study, we show the experiments done in our laboratory to characterize the ADME-DMPK profile of ADV462, as part of the decision-making process for its development as neuroprotective oral drug.

EXPERIMENTAL METHODS AND RESULTS

In vitro ADME

The assessment of ADME-DMPK properties of ADV462 included *in vitro* ADME, non-clinical DMPK and drug interactions; all performed using standard methods. Bioanalysis was done by UPLC-MS/MS.

In vitro ADME

Bidirectional permeability in Caco-2 cells

- Metabolitc stability in liver microsomes
- Metabolic stability in hepatocytes
- Metabolic stability in plasma
- Plasma protein binding
- Brain tissue binding
- Metabolite profiling
- Pharmacokinetics in rodents
- Pharmacokinetics in dogs
- Brain kinetics in rats
- Renal excretion in rats
- Metabolite profiling

Permeability (Caco-2 cells)

- Highly permeable (Papp = 177 nm/s)
- No potential efflux transporter substrate (Efflux ratio = 1.2)

Metabolic stability

- Plasma: stable in rodent and human plasma
- Liver microsomes and hepatocytes: higher metabolic stability in humans vs. other species
- Hepatocytes: In vitro-in vivo clearance correlation in rats using the wellstirred model

Cl int	Human	Rat	Mouse	Dog	Monkey	Minipig
Liver microsomes (µl/min/mg protein)	1.6	1.5	2.8	4.5	79.9	28.5
Hepatocytes (µl/min/million cells)	1.9	28.5	-	5.1	66.4	7.1

Plasma and brain tissue binding

- Method: rapid equilibrium dialysis (RED)
- Low plasma protein binding in humans and rodents (< 67%)
- Low brain tissue binding (rat, 58%)

Metabolite profiling: hepatocytes

- Metabolism routes: hydroxylation and oxidation
- Metabolites found in human hepatocyte also present in preclinical species

Non-clinical DMPK

Pharmacokinetics: oral (10 mg/kg) and intravenous (1 mg/kg)

- Fast oral absorption and good bioavailability (F > 60%)
- Moderate to high plasma clearance (>40% liver blood flow)

Metabolism-based interactions

- $\hfill No$ CYP induction (1A2, 2B6, 3A4) in the concentration range of 1-50 μM (mRNA levels as endopoint)
- Low potential for CYP inhibition using human liver microsomes (IC₅₀ > 100 μ M)

Drug interactions

	Tim	ie (h)				Time (h)	
Species	t _{1/2} (h)	C _{max} (ng/ml)	t _{max} (h)	Cl (l/h/kg)	Vss (l/kg)	F (%)	AUC _{brain} / AUC _{plasma}
Mouse	2.6	2022	0.3	2.4	1.1	60	-
Rat	2.4	900	0.8	2.1	1.4	58	0.4
Dog	1.0	3424	0.3	2.9	2.3	89	_

Brain kinetics: oral (10 mg/kg p.o., rat)

- Brain distribution is fast with a peak concentration of 250 ng/g
- Brain concentration-time profile parallel to plasma

Renal excretion: oral (10 mg/kg, rat)

- 21% excreted in the urine as unchanged compound
- Renal excretion is one route of elimination

Metabolite profiling: plasma (rodents and dog), urine (rat)

- Metabolites detected in vivo also present in vitro
- Metabolites formed by hydroxylation and oxidation
- Most metabolites detected in rat urine also present in plasma

log inhibitor concentration (µM)

Efflux transporter-based interactions

- BCRP inhibition (Caco-2 cells): no inhibition in the concentration range of 2-200 μM
- P-gp inhibition (Caco-2 cells): inhibition in the concentration range of 2-200 μ M (IC₅₀ = 11 μ M)

CONCLUSIONS

- ADV462 distributes to the target organ in rats
- ADV462 has appropriate ADME-DMPK properties in preclinical studies supporting its further development